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ABSTRACT   
 
Social contacts are an important channel for the propagation of disease through a population and 
should be considered in conjunction with traditional epidemic diffusion. Such channels should 
always be taken into account for a realistic estimation of a long-term impact of a disease outbreak 
(natural or malicious) and for the best response options. This paper describes our recent 
experience in developing a simple agent-based model to simulate disease propagation through a 
social network and validating the results of the agent-based simulation by reconciling it with a 
well-known mathematical model. 
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Comparison of an Agent-based Model of Disease 

Propagation with the Generalised SIR Epidemic Model 
 
 

Executive Summary    
 
There are currently three main approaches to epidemiological modeling: mathematical, 
network theory (when social interactions are modeled based on a network theory 
approach) and, closely related to this, agent-based computer models. Agent based and 
network based approaches are complimentary to each other.  
 
The mathematical approach dates back to the SIR model (S-susceptible, I-Infected, 
R-Recovered) and its further modifications by Kermack & McKendrick in 1927 and 
Andersen & May in 1979. This approach provides rigorous results and is the simplest to 
implement, but has an obvious shortcoming in that only simplified scenarios can be 
treated analytically. Agent-based simulation is the most flexible in terms of realistic 
scenario evaluation and has become increasingly popular. 
 
With the increasing availability of computer resources agent based methods allow high 
fidelity modeling of epidemical outbreaks on global, national and community levels. The 
main disadvantage of an agent based approach is model validation, in particular what is 
the accuracy of the model output for a given ‘what if’ scenario (which has never 
occurred)? Therefore one of the important steps of agent-based model validation is so-
called “model alignment” (see Chen et al 2004), when the agent-based model output is 
reconciled with other modeling approaches for realistic (observable) values of model 
parameters. 
 
This paper describes our recent experience in developing an agent-based disease 
propagation model to simulate an epidemic outbreak and comparing the results of the 
agent-based simulation with a mathematical model, SIR, as the first step in validating the 
agent based model. The guiding principle when designing this model was to create a 
research tool that would allow quantitative studies (sensitivity analysis, data assimilation, 
reverse problems) as well as ad-hoc operational scenarios based on a small-scale agent 
based model (that can run on a PC) but with real census data.  
 
The results of this comparison showed that the epidemiological model developed within 
the agent based model is capable of representing modelling of disease spread in a realistic 
social network. By showing an alignment of the output of the agent based model and the 
SIR model we have shown that it is possible to develop a realistic disease spread model in 
a complex multi-agent social context (including alignment of model parameters, scenarios 
and underlying assumptions). This validation in future will be expanded to comparison 
with real epidemic data. 
 
The results of this work will be used in the DSTO Corporate Enabling Research Program 
(CERP): Bio-Terrorism Preparedness, A Detection to Treat System for Biological Weapons 
Attacks on a Community. 
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1. Introduction  

This document reports on the comparison of an Australian agent-based disease propagation 
model with the generalised SIR [1] (Susceptible – Infectious – Recovered) epidemic model. 
This case study uses a disease model built upon the agent-based framework provided by the 
simulation CROWD, developed by DSTO for use in the modelling of civilians within complex 
urban environments. We provide an overview of CROWD and elaborate on the validation of 
the agent-based disease model.  
 
1.1 Case Study 

Investigations into epidemiology by Human Protection and Performance Division (HPPD) 
have led to the search for simple tools to explore mitigation strategies to stem or stop the 
spread of epidemics. A mathematical model of epidemics called SIR (described in section 2.2) 
was the initial basis of their studies. Agent-based models were considered as a means of 
exploring the problem space and this case study comparing an agent-based disease model 
with SIR was initiated.  
 
The agent-based model utilises census data to build a social network, based on family groups 
and work colleagues. The population generated by the framework then interact in a daily 
travel rhythm from home to work. This has the effect of changing the epidemic transmission 
paths over time. A worker could contract a disease from a colleague, give it to their family 
when they arrive home, and they in turn would spread it onwards the next day.  
 
The aim of the case study is to determine if an agent-based model that is structured to use the 
same variables that are incorporated within SIR (namely population size, infection probability 
and probability of recovery per time step) would provide similar results and what measures 
would be necessary to validate the agent-based model against SIR.  
 
1.2 Models 

Once a baseline validation has been undertaken using a variant of the agent-based model that 
replicates the underlying assumptions of the SIR model, such as a uniformly mixed 
population, tests would be done to see how the non-uniform mixing of the normal agent-
based model affects the results. The major expected difference between the agent-based model 
and SIR was that the sporadic contact network would impede the speed of the epidemic.  
 
SIR is a dynamical system that models epidemics over time. The acronym SIR stands for 
Susceptible, Infected and Recovered, which are the three states an individual can be in within 
the model. The model has been known and used for a long time, going back to the original 
publication of W.O. Kermack, A.G. McKendrick [8], The advantage is the clarity of the 
mathematical framework and simplicity in implementation [2]. The basic SIR model is 
represented by a nonlinear dynamical system of three differential equations whose two main 
parameters are: 

A. The probability of a specific infectious individual infecting a specific susceptible 
individual should they meet, multiplied by the chance they will meet per unit time. 

B. The probability an infected person will recover per time unit. 
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CROWD is an agent-based model built upon a complex urban environment representation. 
The validation of the disease model within CROWD against the industry standard SIR (see 
section 2 ) model, and the inherent extensibility of CROWD, permits the research program to 
begin investigating more complex social structures and the effect of a larger range of 
individual behaviours on the behaviour of epidemics. From the effect of individuals either 
staying at home or flooding hospitals to how diseases spread through crowds of intermingled 
people in locations such as shopping centres or sporting events. For technical detail of 
CROWD’s disease model the reader is referred to Section 3. 
 
1.2.1 Background to CROWD 

In 1995 DSTO acquired the rights to use of the Close Action Environment (CAEN) simulator 
from DERA (UK). CAEN is both a wargame and a simulator that allows multi-sided 
multiplayer wargaming. CAEN’s primary focus is close combat infantry battles and as such it 
models up to 500 individual entities, vehicles and infantry, on a raster terrain map. When first 
acquired, CAEN’s urban model was rudimentary utilising 10 metre square buildings with the 
outcome of in-building combat resolved using a modified Lanchester equation. This limited 
the usefulness of CAEN in modelling the MOUT 1 environment and scenarios were limited to 
low-resolution inter-building scenarios, as demonstrated in studies supporting Restructuring 
The Army (RTA) Phase 1. [3] 
 
At the same time as the acquisition of CAEN Land Operations Division (LOD) began 
experimenting with Intelligent Agent Technologies to deliver a wider variety of tactics to the 
entities within their wargames. The first technology to be evaluated was dMARS [4], which 
was employed to explore tactical, environmentally-aware movement in CAEN. This was 
followed by JACK [5] agents that autonomously planned and conducted a company sized 
attack on an enemy platoon within the OTBSaf2 wargame [6]. 
 
Towards the end of the 1990’s, with activities such as the USMC Urban Warrior experiments 
and the enunciation of the Three Block War [7] concept, it became obvious that Urban Combat 
simulation was an important requirement for modelling future operations. Tools available to 
DSTO at the time were unable to model urban environments at a level of fidelity high enough 
to permit detailed urban tactical studies. This deficiency led to the development of the 
Advanced Urban Environment (AUE). AUE is a vector based model of the physical structures 
that make up an urban environment. It includes high detail buildings incorporating internal 
and external features, terrain, trees and other vegetation, roads and infrastructure. Urban 
classification studies were done using AUE as the environment representation to explore the 
effects of the limited line of sight within cities on the tactical awareness of troops [8]. As well 
as providing a representation of the physical environment AUE was designed to provide a 
symbolic representation of the environment that could be used by agents to intelligently move 
around the landscape in a tactically aware manner.  
 

                                                      
1 MOUT : Military Operations on Urban Terrain 
2 OTBSaf: OneSAF Test Bed- Semi Automated Forces, a US brigade level wargame/simulation 
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As complex as urban battle-scapes are they are merely more confined versions of other types 
of complex terrain such as jungles and mountains. The missing element for true realism is the 
indigenous populations of the cities and the level of chaos they bring to urban combat. 
 
CROWD was begun as an answer to both the above observations and the Australian Army’s 
“Future Land Warfighting Concept – Complex Warfare” [9] document that highlighted three 
inter-related complex terrains: physical, human and information. CROWD utilises the 
complex physical terrain provided by AUE and layers the human and informational 
environments over the top. This provides us with an urban model that is capable of 
representing the levels of complexity and chaos inherent in a populated urban environment. 
 
1.3 Report Structure 

This report begins with a description of the current state of Epidemiological modelling and 
then describes the SIR epidemic model in particular. The case study is outlined noting in 
particular how the two models, SIR and CROWD, are aligned. The results of the case study 
and further research are discussed.  
 
We describe in technical detail how a disease and its propagation are modelled within 
CROWD. An XML Schema used to define new diseases is also presented. 
 
In the next section we draw comparisons between CROWD and two other well known 
epidemiological models, BIOWar and EpiSims, and go on to highlight some of the important 
differences between the models. 
 
We conclude with a description of the current state of our modelling, some thoughts for 
future directions as well as conclusions on the utility of the CROWD disease model. 
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2. Agent-based Modelling: 
An Epidemiological Case Study  

2.1 Modern Approaches to Epidemiological Modelling 

There are a number of approaches to Epidemiological Modelling (i.e. to the modelling of a 
disease spread through a population). The traditional well-known approach is to model the 
population and disease spread via a dynamical system, where the dynamics of the infected 
population is described with a system of coupled non-linear differential equations. Such a 
system can provide a simplistic model of social interaction and mixing of individuals and, as a 
result, an evolution of an infectious state of the whole population. The parameters of these 
dynamical systems (‘population models’) are usually provided from historical observations 
(data fitting) or from physics-based reasoning (population fluxes, rate of contacts etc). This 
approach and the SIR model have been known for a long time, going back to the original 
publication of W.O. Kermack, A.G. McKendrick [10] in 1927. Its sound advantage is the clarity 
of its mathematical framework and simplicity in implementation [11].  
 
The second approach to Epidemiological Modelling is to model an underlying social network 
and population interaction with the modern methods of Network Theory [12]. Although 
Network Models still require some fitting parameters, they generally provide broader models 
of epidemic outbreaks than simple equation-based models (i.e. they have richer and more 
flexible capability for scenario representations) [12]. For example, from the Network Theory 
point of view an epidemic outbreak simply corresponds to a percolation threshold on an 
underlying social network. Such an approach to Epidemiological Modelling provides a new 
theoretical foundation for consistent data analysis, parameter estimation, modelling and 
forecasting. Finally, with the increasing availability of computer resources agent-based 
simulation has become a practical method for conducting Epidemiological Modelling. In the 
agent-based approach the whole township can be modelled as a system of software agents 
interacting in time and space in according with the prescribed rules. Agent technologies can 
provide individual citizens with motivations, opinions and biases or work on aggregations of 
population. It becomes possible to model the entire population in a plausible manner, 
providing a model of community that acts as if it inhabits the city or the whole country 
[13,14,15]. The development of such an infrastructure is a critical step in the realistic 
simulation of complex social network dynamics and its response to epidemiological events.  
 
It is important to recognise that disease spread through population is controlled by two 
groups of parameters: the disease properties (infection and incubation period, symptom 
timing, infection mechanisms) and the structure of the social network of the population 
(contact rate, social clustering, and migration). These groups of parameters are completely 
unrelated and can be studied independently. For instance, the structure of the social network 
of the community can be studied long before influenza outbreak occurs within it (if ever). 
Only by combining together a given disease and a given social network might an epidemic be 
created, but this depends on threshold conditions in the relationship between the network 
connectivity and infection and recovery rates (see the SIR model: Section 2.2), otherwise the 
disease dies out.   
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The critical factor for a high fidelity Epidemiological Model is the ability to independently 
validate its predictive results. It is often very difficult due to a lack of reliable field data, as the 
simulated event has never occurred, or based on ethical grounds to conduct such a validation. 
The logical choice of validation techniques in such situations is to use cross-validation, to run 
a validated model for some simplified scenarios (where the result is known or obvious) or to 
compare its output with other available models that have been validated (so called model 
alignment [13, 16, 17, 18]). The model alignment method provides a rather simple yet effective 
way to ensure model plausibility (no noticeable flaws in functionality), before it can be moved 
to the parameter tuning stage. 
 
In this report we demonstrate an application of such a technique to the validation of the 
agent-based disease propagation model CROWD against the dynamical system model SIR. 
 
2.2 SIR Mathematical Model  

The basic SIR model can be represented by a nonlinear dynamical system of three differential 
equations [2]: 
 
S = Number of Susceptible Individuals 
I = Number of Infected/Infectious Individuals 
R = Number of Recovered Individuals 

 = probability of a specific member of I infecting a specific 
member of S should they meet, multiplied by the chance they 
will meet per unit time 

 = the probability an infected person will recover per time 
unit 

(3)                 
d

d

(2)        
d
d

(1)             
d
d

I
t
R

ISI
t
I

SI
t
S

 

Figure 1: The three nonlinear equations that comprise the SIR model 

 
These equations describe the time evolution of a population between disease states Susceptible, 
Infected and Recovered. The parameter  is the probability of a specific member of I infecting a 
specific member of S should they meet, multiplied by the chance they will meet per unit time. 
The parameter  is the probability an infected person will recover per time unit. For the 
extreme scenario S = 0 (no susceptible people left) we would have a monotonic exponential 
decay of I = I0 e- t. 
 
The threshold condition for epidemics can be derived from the second equation of the SIR 
system (positive rate of infected people) and can be written as S(t = 0) >  / . 
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The SIR system was initially developed based on a very simplified model of social interaction. 
For instance an assumption of uniform population mixing was implicitly used to deduce the 
nonlinear terms at the right hand side of the SIR system. It has been a well- recognised 
weakness of the SIR model and has been a base for its ongoing criticisms. This issue was 
recently addressed in a paper [19] where an important generalisation was made to extend the 
standard SIR model to the non-uniform mixing case: 
 

(6)                  
  d

d

(5)        
d
d

(4)             
d
d

I
t
R

IIS
t
I

IS
t
S

 

 
where   2 (estimated value (5)) is a new parameter describing an efficiency of social mixing. 
The case   1 corresponds to a uniform mixing, as in the standard SIR model. Since the 
extended SIR model has an extra fitting parameter ( ), it can be better reconciled with field 
observations and can then be aligned with the two major observable values: time of epidemics 
and its amplitude.[19, 20] 
 
In section 3.5 the results of applying equations (4)-(6) to CROWD’s output are discussed. 
 
2.3 Agent-based Epidemic Case Study  

In previous case studies [16, 17, 18] we modelled a rather simple scenario with CROWD to 
demonstrate its modelling capabilities in the epidemiological domain so only the standard SIR 
model was used to cross-validate CROWD output. More complicated scenarios and 
corresponding CROWD alignment with the extended SIR model will be published elsewhere. 
 
A small Australian town, population just over 3000, was built from Australian Census Bureau 
data (see [16, 17, 18]). The data used included the age/gender break-down and family-
household-workplace makeup. The model generates a population based on this data and then 
builds families, households and work places based upon the census data. An initialisation file 
is used to determine the types of businesses within the town as well as the number of 
employees and hours worked. Town cadastral town data is used to match businesses and 
residences to brick and mortar buildings. The generated families and workforce is then 
randomly distributed amongst the residential and business buildings. For the purposes of this 
study such a distribution was adequate, in future studies other methods will be explored. The 
population then moves around town according to the basic daily rhythm of traveling to and 
from home and the workplace. At each location a different set of people come into contact, 
and this set changes as different shifts start and finish work, and make their way home to their 
families. The contacts derived from these rhythms are used to drive the disease model. The 
disease model is derived as a Finite State Machine with a probability of moving from one 
disease state to another as a result of the social contacts (S-susceptible, I-infected, 
R-recovered). The structure of social network generated by CROWD is presented in Figure 2. 
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No. Contacts 

Time 

Figure 2: Plot of distribution of the number of contacts per 2 hr period per agent 

 
The peaks to the right correspond to the occupants, students and teachers, within the three 
schools of the town, which have significantly greater numbers of co-located individuals than 
other locations.  
 
An artificial epidemic spread was created in this township within the CROWD model, where 
each infected agent has a probability P1 = 7.1x10-4 of infecting uninfected agents it meets, and a 
probability P2 = 0.9959 of staying infected per two hour period (giving a half life of 24 hours). 
The agents then spread the infection through the simulated town. The resulting graph of 
number of people in SIR states is given in Figure 3. As can be seen from this graph, at first the 
disease spreads quickly through the susceptible populace, however, as more people become 
infected, the availability of susceptible people drops, making it less likely for those infected to 
pass the disease on. Thus after a week, the epidemic dies out. 
 

 

1 

3 

2 

a b 

Figure 3: CROWD simulation epidemic data: a) results of 10 runs. Group 1, 2 and 3 lines represent 
the susceptible, infected and recovered populations respectively. Peak time differing due to 
amplification of effect of statistical variation when I is small, b) same data compensated for 
statistical variation in time to show shape is conserved. 

 
Of particular interest is the variation in timing of the epidemics in each of the 10 runs. The 
epidemic is a slowly spreading one. For a significant time, I stays small as there are few people 
to pass the disease, and each person recovering at this early stage has a large proportional 
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effect on the size of I. It is not until I>>1 that the epidemic takes off quickly, with many people 
to spread it. At this stage statistical variation in infections and recoveries makes little 
difference and the course of the epidemic is constant for each run to within a few percent (see 
Figure 3b). The time to peak I is 32 ± 6 days, with the peak percentage of population infected 
55 ± 1%. The final number of uninfected people is 80 ± 10.  
 
In Figure 4, the CROWD output data has been used to create a map of where infections occur 
within the virtual town. Here the radii of the red circles are proportional to the number of 
people infected at a site. The three large infection zones are the three schools.  
 

 
Figure 4: Map of where infections occur. Larger circles correspond to more infections. Light blue 

buildings are residential, pink buildings are businesses. Major infection sites correspond to 
the 3 schools.  

 
2.4 Validating Results with the SIR Mathematical Model  

As discussed earlier, it is critical for a high fidelity epidemiological model to be able to 
independently validate its predictive results. Here the CROWD epidemiological model is 
compared to the SIR mathematical model of section 2.2. 
 
In order to adequately compare CROWD results to the SIR model,  can be set to reflect the 
same half life time of 14 days used to generate the CROWD data in Fig. 2. 
 

hr/0021.
2414

)5log(.   (7) 
 
Then by using the following function derived from (1) and (2) (see [2]): 

))0()((
)0(
)(log)0()( StS

S
tSItI  

and using the data depicted by Fig. 13 to assign the start (t = 0) and end (t = ) values of S and 
I, we can find the ratio  / . This provides a value  = 2.46x10-6 per head per hr.  
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Evaluating the SIR model for these values of parameters ,  (done in Mathematical) leads to 
the plot in Fig. 15. As can be seen, the general behaviour of the two models is the same, with 
an epidemic lasting multiple months, a sharp drop in S followed by a levelling out as I dies 
out, unable to sustain itself with the reduced S, and an increase in R as the sick recover. The 
same general conclusion holds for different values of parameters ,  and this is a strong 
indication of CROWD fidelity. 
 

 
Figure 5: SIR model epidemic state evolution, matching recovery time and initial and final S, I and R 

with the CROWD simulation 

 
Although the plots are not perfect matches, that difference is the expected outcome. The 
timing and magnitude of the Infected peaks are different. CROWD predicts I reaches a peak of 
55% of the population on the 32nd day, whereas the SIR model predicts a peak of 39% on the 
61st day. This is due to the differences in the population’s contact topology. As mentioned 
earlier, the SIR model is derived assuming uniform mixing among all members of the 
population, whereas a real population has people with a wide range of contact rates [12, 21]. 
In such systems the part of the population with higher than average contact rates (i.e. the 
students in see Fig. 12) spread infection fast, more than compensating for those with lower 
than average rates. This causes the infected population to peak earlier and higher (see also 
Rahmandad et al 2004)[22]. 
 
To further illustrate this, we could have chosen to align the values  and  with CROWD 
using equations 4 and 5 and then using the CROWD S, I, R initial conditions to model the SIR 
model, giving Figure 6. 
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Figure 6: SIR model epidemic state evolution, matching initial S, I and R, recovery time and chance 

to infect with the CROWD simulation 

 
For an epidemic with matching properties (same , P1 and n) we see that the SIR model 
predicts a much milder epidemic. Again, the difference is due to the more efficient passing of 
infection through CROWD’s more realistic social network than a uniform network assumed 
by the SIR model.  
 
It is also true, however, that the contact network of CROWD requires improvement. In 
particular the connection networks within schools and work places are currently uniform, 
rather than more realistic scale free networks, resulting in overly high contact rates and 
clustering coefficients, which in turn lead to overly efficient disease propagation. Changing 
this will result in (amongst other effects) bringing the student peaks in Figure 12 back towards 
the main population, but they should still be higher than the general populace.  
 
In general, we found that when trying to simulate more complex scenarios (spatially 
inhomogeneous populations, special events, etc.) the SIR-like models become rougher 
approximations and the agent-based approach becomes more appropriate (see also Toroczkai 
et al 2007[26]). 
 
As stated earlier, the match between the standard SIR model and that of CROWD is because 
the SIR model uses a simplistic uniform social network. It is possible to get CROWD to use an 
identical network by forcing all agents to co-locate. To study this, CROWD was rerun for 1055 
people are locked in a room, where every agent comes into contact with every other each time 
period. A weakly infectious disease is introduced and allowed to spread (the chance of 
passing the infection per contact is 0.00009, and the chance to recover per time period is 0.04). 
The corresponding SIR model is then run, from the times when CROWD’s I first exceeds 1, 5, 
10 and 20. The level of fit between the CROWD model I population and that of the SIR model 
is then found in each case, using the R2 score (R2 =1 is a perfect match, R2 =0 indicates no 
relationship between the predictions). Figure 7 contains an example of this output. 
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Figure 7: SIR matches to CROWD (agents in same room), starting at I=20 

 
The R2 score results, over 6 runs of CROWD, are summarised in the following table. The 
purpose of higher starting thresholds of I are to get past the initial stage of the epidemic where 
small statistical fluctuations have large time impacts. As can be seen, the R2 score dramatically 
improves between a threshold of I=1 and I=10. 
 
Table 1: R2 score comparison of I predictions of CROWD and SIT models, for different threshold 

starting values of I 

Starting I I=1 I=5 I=10 I=20 
  0.964 0.966 0.939 0.927 
  0.363 0.833 0.901 0.915 
  0.922 0.923 0.975 0.906 
  0.956 0.969 0.972 0.972 
  0.226 0.867 0.915 0.972 
  0.944 0.938 0.952 0.941 
Average 0.729 0.916 0.942 0.939 

 
An R2 of over .9 indicates a good match between the two models. Varying the model 
parameters to create a more severe epidemic produces matches in excess of .99. 
 
There is a caveat involved here. In CROWD, for the weak epidemic used here, there are two 
possibilities: in almost 40% of cases, the disease died out before infecting more than a few 
people; in the other 60%, large epidemics occurred. This is due to statistical fluctuation being 
very significant at the start of an epidemic, a feature that the more simplistic SIR model cannot 
capture. The CROWD runs used in the above table are those that do bloom into a large 
epidemic. 
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2.5 Analysis of CROWD Epidemic Data Using Generalised SIR  

In this section the results of applying the generalised SIR equations (4)-(6) revealed new and 
informative science about epidemics. 
 
An analysis of the predicted value of  of equation (5) revealed that  is not a constant of the 
system. Rather it varies with the number of agents recovered and immune to the disease. The 
affect can be seen in Figure 8 as the cause of the effective hysteresis loop. If  was constant, the 
number of new cases per hour should be proportional to I , and the dark blue data points 
would all lie on a single line. Instead,  varies with R. The physical interpretation of this is that 
at the start of the epidemic, <1, meaning infection spreads through the agents more quickly 
than for a uniform social network. However as the number of recovered agents grows, paths 
of possible transmission through the social network are blocked, meaning fewer new cases, 
equivalent to a raising .  
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Figure 8: Dark blue is partially time averaged CROWD data. Pale blue line results from a model for 

(R). The top edge of the loop describes the rate of new cases per hour as I grows, and the 
bottom edge describes the number of new cases as the epidemic dies out. That the graph 
forms a loop rather than a line demonstrates that  varies with the number of recovered. 
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By studying the effective initial and final values of , which can be read from the gradient of 
Figure 8 in Log-Log scale, a model for (R) was constructed. As seen in Figure 8, it well 
reproduces the behaviour seen here (r = R/Total Population). 
 

(8)                                           2/)) Cos()3.185(.)3.185((.)( rr  

Preliminary investigations also show that this model better predicts the precise course of 
the epidemic than the standard or constant  SIR models. 
 
This improved form of the SIR equations can be used as a foundation for the development 
of simplified operational models with a capability to produce a realistic evaluation of 
numerous "what-if" scenarios within a limited timeframe by using ordinary computer 
resources (PC).  
 
2.6 Main Results 

The epidemiological model within CROWD is capable of high fidelity simulation for 
modelling of disease spread in a realistic social network. By careful alignment of the output of 
CROWD and the SIR model we have obtained a sense of validity that is needed to develop a 
realistic disease spread model in a complex multi-agent social context (including alignment of 
model parameters, scenarios and underlying assumptions). This validation in future will be 
expanded to comparison with real epidemic data.  
 
We believe that our new agent-based model for disease outbreaks provides a cost-effective 
tool for reasoning about such events and for the simulation of the typical “what-if” scenarios, 
as well as for the evaluation of various response options. Such a model can be used by civilian 
health officials for formulating health management policy, as well as by military commanders 
wishing to assess the impact of disease (naturally occurring or through deliberate biological 
warfare attack) on their operational capability.  
 
Moreover, the complexity and high fidelity of the model is such that it is revealing new 
science about the effect epidemics have on population networks.  
 
Shortcomings within the contact graph generated within CROWD, in particular within the 
classroom environment of schools, have been identified and will be addressed in later 
versions with further research into generating realistic scale free networks for such 
environments. 
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3. The Disease Model in Detail 

The disease model is a plug-in model for CROWD that hooks into the Health module which 
stores each individual’s physiological state. To propagate diseases it utilises mechanisms 
within CROWD that track the population’s locations and movements. With the disease 
module a Disease List keeps track of all diseases an individual has contacted; disease progress 
is monitored via the Immunity class and follows the process outlined in Figure 9. 
 
A requirement for the disease model is the ability to track how long people are in contact with 
each other. The contact model developed for the study is a proximity model, with people 
being counted as being in contact if they are in the same building. This is reasonable for 
diseases that are spread via airborne means but a more detailed contact model would be 
required for other disease transmission vectors. 
 
The disease Life Cycle is linked into the TimeTicker, with the TimeInContactMatrix and each 
individuals Immunity linked into the TimeTicker as TickListeners.  

 TimeInContactMatrix: This maintains a list of each individual’s current constant time 
in contact with each other individual in the environment. This time is updated each 
Tick. 

 DiseaseModel: As well as maintaining time in contact the TimeInContactMatrix also 
kicks off the checks for disease transmission by telling the Model the amount of time 
each pair of individuals has been in contact. The DiseaseModel checks each person’s 
DiseaseState and conducts a disease transmission test if they have been in contact long 
enough and one of them is infectious. 

 Immunity: This holds the current DiseaseState of a single Disease that an Individual has 
contacted. The Immunity is held within a DiseaseList which maintains all the diseases 
that a particular individual has contacted. Each time tick the Immunity checks the 
probability of the current disease state transitioning to a new state. 

 
The following page outlines the timing of events within the model. UML class diagrams for 
the disease module are shown in Figure 10 and Figure 11. 
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Figure 9: Function State Diagram for the disease model 

 
Function State Diagram Description: 

 The TimeTicker ticks the TimeInContactMatrix which in turn updates the times in 
contact for each individual in each location. 

 Individuals within a location and the updated contact time are sent to the 
DiseaseModel. 

 Test for Disease Propagation: DiseaseModel 

a. Each pair of individuals who have a positive contact time have their current 
Disease States checked. If they have a disease and are infectious and the 
contact time is > recheck time for that disease state then a check is made to see 
if the Disease is transmitted to the other party. If the disease is propagated it is 
added to the individual with the first stage Disease State of that disease. 

 Once all these tests have been completed the TimeTicker then ticks each Individuals 
DiseaseLists.  

 Test for Disease State progression: DiseaseList.Immunity 

a. Each tick every Individuals Immunities are checked to see whether any disease 
they are currently carrying moves to a new Disease State, i.e. from Infectious 
to Recovered. This transition is probability based and dependant on the 
disease, its current state and the recheck period of the disease. 
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Figure 10: Health Dependencies 
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Figure 11: Disease Model Components 
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3.1.1 Disease XML schema and example: Influenza 

Diseases are stored in an XML format that captures the requisite information regarding all 
aspects of a diseases life cycle. This enables users to produce new diseases and modify old 
ones by creating new XML documents accorded to the Disease_DTD schema. 
 

DiseaseType

tns:DiseaseName

tns:StartState

tns:EndState

tns:TransmissionMethod

tns:TransmissionMethod

1..

tns:Contact

tns:Proximity

tns:Airborne

tns:DiseaseState

tns:DiseaseStates

1..

tns:StateName

tns:StateID

tns:StartTime

tns:EndTime

tns:DiseaseStateTransition

tns:StateTransitions

1..

tns:Probability

tns:NextState

tns:RecheckPeriod

tns:SubsumedStates

tns:SubsumedStates

0..

tns:State

1..

 
Figure 12: Disease Type XML DTD 

 
While the DiseaseType contains the information about the disease it is the DiseaseState that 
drives the Disease Model. The disease states capture the progress of disease as its runs its 
course. For each DiseaseState there a number of DiseaseStateTransitions that describe which 
DiseaseState the disease will next pass on to. These transitions are probability based but more 
advanced version of the disease model could modify these probabilities based on the 
interventions that have taken place with a particular patient. The presence of DiseaseStates 
allows Individuals to modify their behaviour based on the state they are currently in. For 
example someone with severe flu symptoms might stay home instead of going to work. These 
kinds of actions naturally will change the way the disease performs in the wider population. 
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Table 2: Sample Flu XML file 
Disease Name: Influenza 

State Name: Healthy 
Probability 0.00714286 
Next State Infectious 

Disease State 
State Transitions 
 
 Recheck Period 2 Hours 
State Name: Infectious 

Probability 0.004117 
Next State Recovered 

Disease State 
 State Transitions 

 
Recheck Period 2 Hours 

State Name: Recovered 
Probability 1 
Next State Recovered 

Disease 

Disease State 
State Transitions 

Recheck Period - 
 
The example disease Influenza only has 3 states, Health -> Infectious -> Recovered, and was 
used as a comparison to the mathematical model SIR. The flexibility that this design gives you 
is that you can add extra disease states as required for the complexity and fidelity of the 
model you are studying. For example adding in states for “Pre-Symptoms” and “Post-
Symptoms” which the model might utilise to modify the behaviour of the entities based on the 
states they are in. In the “Pre-Symptoms” state the individual would continue to go to work 
potentially still spreading the disease while the “Post-Symptoms” state the individual might 
stay home from work and wait to recover. 
 
 

4. Discussion 

The scenario for the case study was a flu outbreak within an established social network. This 
simple scenario, or variations thereof, has been widely studied with both mathematical and 
agent-based approaches. One of the benefits of agent-based models lies in the ability to extend 
to cover other scenarios such as 

 Non homogeneous population mixing. 

 Disease spread amongst time variant social networks, such as seasonal workers. 

 A lone infectious agent moving amongst a random contact network, such as an 
infectious individual in a large shopping complex or business travellers flying in and 
out of cities/countries. 

 Interventions in the epidemic life cycle. 

 Tracing the path of a single actor in an epidemic 
 
4.1 Alternative Agent-based disease models: EpiSims and BIOWar 

There are a number of available agent-based disease models in the literature. Two of the better 
developed models available are EpiSims [23] and BIOWar [25].  
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4.1.1 EpiSims 

EpiSims [23], is a highly resolved agent-based simulation tool which combines realistic 
estimates of population mobility, based on census and land-use data, with parameterised 
models for simulating the progress of a disease within a host and of transmission between 
hosts is based upon Transportation Analysis and Simulation System (TRANSIMS) [24], 
developed at Los Alamos. TRANSIMS provides a way to generate synthetic realistic social 
contact networks in a large urban region. It is based on the assumption that the transportation 
infrastructure constrains people’s choices about what activities to perform and where to 
perform them, the nine activities included within EpiSims are: work, shop, visit, social, other, 
serve, school, college.  
 
4.1.2 BIOWar 

BIOWar [11, 25] is a computer simulation that combines computational models of social 
networks, communication media, and disease transmission with demographically resolved 
agent models, urban spatial models, weather models, and a diagnostic error model to produce 
a single integrated model of the impact of a bioterrorist attack on an urban area. BIOWar is 
configured to represent real cities by using census data, school district boundaries, and other 
publicly available information. Moreover, rather than just providing information on the 
number of infections, BIOWar models the population of individual agents as they go about 
their lives – both the healthy and the infected. This allows the analyst to observe the 
repercussions of various attacks and containment policies as revealed through indicators such 
as absenteeism, medical web hits, medical phone calls, insurance claims, death rates, over-the-
counter pharmacy purchases, and hospital visit rates, among others.  
 
4.1.3 Comparison with CROWD 

Where CROWD differs from the above models is the fidelity of the traffic modelling and the 
activity model. For the study individual movement from place of work to home was assumed 
to take a certain amount of time, but was not otherwise modelled, no traffic was generated. 
The activity model used within our study encompassed only work, school, and home, which 
contained enough complexity for our aim of validation against the SIR model. The disease 
model has been designed to include the level of detail exhibited in the disease model of 
BIOWar (such as symptoms, immunity and variant transmission rates) however for our 
purposes a simple implementation was required that matched the variables within the SIR 
equations. 
 
What CROWD offers that is not within either of EpiSims or BIOWar is the high fidelity 
physical environment that it inherited from its roots in military simulation. The social network 
model is generated from the same sets of data as used in BIOWar and Transims, although the 
transport model is not as sophisticated. The ability to produce results similar to those of SIR 
informs us that the model has enough complexity to provide a plausible alternative to SIR 
while providing us with greater insight into the disease transport paths and mechanisms for 
intervention.  
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4.2 Further Work 

As the model is extended we will be better placed to address the scenarios posited at the start 
of this section. New studies will provide the impetus for adding and upgrading plug-ins 
within CROWD. A short list of possible extensions is in Table 3. 
 
Table 3: CROWD Model Extensions 
Future Requirements Description 
Extended Individual Activities Impacts of the fidelity of various outputs, including 

traffic modelling, disease spread, and social network 
structures. 

Social Networking Improve the social networking model to better 
represent how networks form and evolve. 

Communications and Media A mechanism for information, rumour and propaganda 
to propagate through the population. 

Multiple Districts and Regions Enabling larger populations to be modelled 
Climate Models Incorporating seasonal influences and weather patterns 
 
 
 

5. Conclusion 

An agent-based model of disease propagation was compared with a validated mathematical 
model of epidemics, the SIR model. The comparison validated the agent-based disease model, 
CROWD, in its simple form and providing a foundation for further studies. The benefits of 
agent-based models for studying factors that impact upon disease propagation through scale 
free social networks were also briefly discussed. Amongst these is the ability to investigate 
targeted disease mitigation strategies on select members of the population. 
 
Using available census data to generate our populations gives us a measure of confidence in 
the demographics of the simulated population. The data provided within a census is broad 
enough to derive a useful picture of an individual within that society. Information such as: 
incomes, household outgoings, professional qualifications are all generalised within ABS 
census data packs and thus are available to clothe the simulated individuals.  
 
Coupled to a modular and extendible model of a disease lifecycle we have the ability to 
increase the fidelity of the model in areas such as an individual’s response to disease 
symptoms, medical interventions and the social impact of disease spread. This capability and 
the method whereby disease and social models are combined with complex urban models 
expands our capability to explore disease propagation a society. 
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6. Recommendations 

This method of disease analysis lends itself to exploring current issues, such as swine flu or 
SARS, where a highly mobile community can rapidly spread a disease outside of its initial 
boundaries. Other interesting cases such as a single infectious traveller moving through the 
population would be difficult to validate however it is a scenario that concerns health officials.  
 
Both HPPD and LOD have groups investigating civilian modelling and a shared model will 
permit cross-divisional collaboration at a fundamental level. The results of this work will be 
used in the DSTO Corporate Enabling Research Program (CERP): Bio-Terrorism 
Preparedness, A Detection to Treat System for Biological Weapons Attacks on a Community.  
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